Персональная премия авторов этой книги за самое недооцененное научное достижение XX века присуждается открытию того факта, что сверхновые звезды — мощные финальные взрывные аккорды особо крупных умирающих звезд — являются первостепенным источником тяжелых элементов в природе. Это относительно невоспетое озарение впервые было высказано в научной статье, авторами которой выступили Э. Маргарет Бербидж, Джеффри Р. Бербидж, Уильям Фаулер и Фред Хойл. Она была опубликована в 1957 году в американском журнале «Обзоры современной физики»[39] под заголовком «Синтез элементов в звездах» и содержала теоретическую и вычислительную схему, которая по-новому трактовала и объединяла размышления других ученых за последние 40 лет по двум основным темам: об источниках звездной энергии и о преобразованиях химических элементов.
Космическая ядерная химия и попытки понять, как в процессе термоядерного синтеза появляются и разрушаются разные типы ядер, всегда были непростым делом. В числе самых главных вопросов непременно значились следующие: как ведут себя химические элементы под воздействием разных температур и разного уровня давления? Соединяются ли эти элементы или распадаются? Насколько это трудоемкий процесс? Выделяется ли при этих процессах новая кинетическая энергия или потребляется существующая? Как эти процессы отличаются между собой в случае с каждым отдельным элементом периодической таблицы?
Что для вас значит периодическая таблица химических элементов? Если вы не отличаетесь от большинства школьников, то наверняка помните огромную таблицу на стене кабинета химии. Некие загадочные буквы и символы в ее прямоугольных ячейках ассоциировались с лабораториями, в которые незачем заходить без явной на то причины. Но для тех, кому знакомы ее секреты, эта таблица — книга рассказов о космической жестокости, в результате которой ее компоненты, собственно, и появились на свет. В периодической таблице перечислены все известные человечеству природные элементы Вселенной, выстроенные от малого до великого по мере увеличения количества протонов, приходящихся на ядро каждого из них. Два самых легких элемента — это водород (один протон на ядро) и гелий (два). Как верно подметили четверо авторов той самой научной статьи, при наличии должных условий — температуры, плотности и давления — звезда может использовать свои запасы водорода и гелия для того, чтобы собрать из них все остальные элементы периодической таблицы.
Подробности этого созидательного процесса и прочих взаимодействий, которые ведут не к созданию, а к распаду ядер, составляют собой основу науки ядерной химии. Она занимается тем, что рассчитывает и использует «сечения столкновений», чтобы измерить, как близко одна частица должна оказаться к другой, чтобы они могли вступить в какое-либо существенное взаимодействие. Физики могут запросто рассчитать сечения столкновений для бетономешалок или огромных жилых трейлеров, путешествующих по улице в кузове эвакуатора, а вот проанализировать поведение крошечных ускользающих от внимания субатомных частиц уже в разы труднее. Уверенное понимание концепции сечения столкновения позволяет физикам прогнозировать скорость ядерных реакций и их динамику. Нередко небольшие неясности в сверочных таблицах значений этих сечений приводят ученых к вопиюще ошибочным заключениям. Трудности, которые им приходится преодолевать, можно сравнить с попытками ориентироваться в метро одного города, вооружившись схемой метро другого: при всей корректности вашей базовой теории любой нюанс ситуации может оказаться критическим.
Несмотря на то что ученые ничего не знали о сечениях столкновений, в первой половине XX века они на протяжении долгого времени подозревали, что если и есть во Вселенной место для экзотических ядерных процессов, то ядра звезд для них — самый подходящий вариант. В 1926 году британский астрофизик-теоретик сэр Артур Эддингтон опубликовал статью, которая называлась «Внутреннее строение звезд»[40]. В ней он доказывал, что лаборатория имени Кавендиша, бывшая ведущим центром по исследованиям в области атомной и ядерной физики, не может быть единственным местом во Вселенной, где умеют переплавлять одни элементы в другие.
«Но возможно ли признать, что такое преобразование происходит? Утверждать это непросто, но отрицать, что это происходит, пожалуй, еще сложнее… и если что-то можно совершить в лаборатории Кавендиша, вряд ли так уж сложно повторить это внутри Солнца. Думаю, что предположение о том, что звезды — плавильные котлы, в которых более легкие атомы, взятые из туманности, соединяются в более сложные элементы, в целом должно поддерживаться»[41].
Статья Эддингтона, которая легла в основу книги под тем же названием, которая вышла в 1926 году, предвосхитила более подробные исследования четверки ученых из 1957 года. Она вышла на несколько лет раньше открытия квантовой механики, без которой наше понимание физических свойств атомов и атомных ядер было бы, мягко говоря, жалким. Словно пророк, Эддингтон сформулировал подобие сценария для создания звездной энергии с помощью термоядерного синтеза водорода и гелия.
«Нам не следует привязываться к реакции образования гелия из водорода как к единственно возможному источнику энергии [для звезды], хотя что-то подсказывает, что для дальнейших этапов создания химических элементов характерно гораздо меньше выделения и гораздо больше поглощения энергии. Позицию можно сформулировать следующим образом: атомы всех элементов состоят из атомов водорода, прочно связанных друг с другом, и, вероятно, когда-то они были образованы из водорода; нутро звезды — столь же подходящее место для свершения эволюции, как и любое другое»[42].
Любая модель преобразования элементов должна объяснять то их разнообразие, которое мы наблюдаем на Земле и в других регионах Вселенной. Для этого физикам требовалось найти некий фундаментальный процесс, который позволял бы звездам извлекать энергию из процесса переплавки одних элементов в другие. К 1931 году, когда теории квантовой механики уже вполне оформились (хотя еще не были открыты нейтроны), другой британский астрофизик, Роберт д'Эскур Аткинсон, опубликовал подробную статью, которая предлагала читателю «теорию синтеза звездной энергии и происхождения элементов… в которой различные химические элементы постепенно создаются из более легких внутри самих звезд с помощью успешной переработки протонов и электронов одного за другим».
В том же году американский ядерный химик Уильямс Д. Харкинс опубликовал статью, в которой отметил, что «элементы с низким атомным весом (помните? речь о количестве протонов и нейтронов в каждом ядре) имеются в природе в гораздо большем изобилии, нежели тяжелые элементы, а элементы с четными атомными числами (по количеству протонов в атомном ядре) в среднем встречаются примерно в десять раз чаще, чем элементы с нечетными атомными числами, но примерно того же достоинства». Харкинс выражал догадку, что относительное изобилие ряда элементов скорее зависит от ядерного синтеза, чем от такого химического процесса, как возгорание, и что более тяжелые химические элементы наверняка