История всего. 14 миллиардов лет космической эволюции. - Нил Деграсс Тайсон. Страница 22


О книге
и ΩΛ, а изучение сверхновых звезд — значение алгебраической разницы между Ом и ОЛ.

Данные спутника WMAP показывают, что для самых заметных отклонений от однообразия реликтового излучения характерен угол 1 градус, и это означает, что сумма ΩM + ΩΛ равняется 1,02 (±0,02). Так, в рамках границ экспериментально допустимой точности мы можем сделать вывод, что Ом + ОЛ = 1. Значит, пространство плоское. Результаты наблюдений за далекими сверхновыми типа Ia можно резюмировать строчкой □л — Ом = 0,46. Если мы совместим этот результат с утверждением о том, что Ом + ОЛ = 1, то получим следующие значения: Ом = 0,27, а ОЛ = 0,73; погрешность каждого из них составляет несколько процентов. Более точные данные, полученные с помощью спутника Planck, дают значения QM = 0,31 и ОЛ = 0,69. Как уже отмечалось ранее, это лучшая на сегодня оценка двух ключевых космических параметров: их неопределенность уменьшилась до ±2 %. Они демонстрируют, что на вещество — как на обычное, так и на темную материю — приходится лишь 31 % суммарной плотности вещества (или обычной энергии в его эквиваленте), в то время как на долю темной энергии приходится 69 %. Если хотите, можно рассматривать массовый эквивалент темной энергии — E/c2; тогда на долю темной энергии приходится 69 % всей массы Вселенной.

Ученые установили, что при ненулевом значении космологической постоянной относительное влияние вещества и темной энергии должны меняться с течением времени. С другой стороны, плоская Вселенная навсегда останется плоской, от своего рождения в результате Большого взрыва и вплоть до того бесконечного будущего, что ждет нас впереди. В плоской Вселенной сумма ΩM и ΩΛ всегда равна единице, а значит, если изменится одно слагаемое, то другое не сможет остаться неизменным.

В космические эпохи, наступившие вскоре после Большого взрыва, темная энергия не играла во Вселенной почти никакой роли. По сравнению с предстоящими вехами в ее истории Вселенная тогда была столь мала, что на долю ΩΛ приходилось число немногим больше нуля, в то время как ΩM практически равнялась единице. В те времена Вселенная напоминала собой пространство без какой-либо космологической постоянной. Шло время, и значение ΩM постепенно уменьшалось, зато значение ΩΛ росло в обратной к нему пропорции, сумма же неизменно оставалась равной единице. Рано или поздно, через сотню миллиардов лет от сегодняшнего дня, ΩM упадет почти до нуля, зато ΩΛ будет расти и расти, пока не приблизится по своему значению к единице. Мы видим, что история плоской Вселенной с ненулевой космологической постоянной подразумевает переход от «ранних лет», когда темной энергии отводилась самая незначительная роль, к «настоящему», когда ΩM и ΩΛ были приблизительно равны, а затем и к бесконечному будущему, в котором вещество будет распределено по Вселенной столь разреженно, что ΩM будет бесконечно стремиться к нулю, хотя сумма двух Ω все равно будет оставаться равной единице.

Наши наблюдения позволяют, с одной стороны, вычислить, что в данный момент в галактических кластерах величина ΩM составляет примерно 0,29, с другой — наблюдения за реликтовым излучением и далекими сверхновыми звездами приводят значение, скорее близкое к 0,31. С учетом экспериментальной погрешности эти два значения можно считать «совпадающими». Если мы действительно живем во Вселенной с ненулевой космологической постоянной и если эта постоянная отвечает (в паре с веществом) за формирование плоской Вселенной, как это предсказывает инфляционная модель, тогда космологическая постоянная должна иметь значение, которое, в свою очередь, приближает значение ΩΛ к 0,7 с лишним. То есть оно в два с половиной раза больше значения ΩM. Другими словами, ΩΛ сейчас выполняет основную часть работы во имя того, чтобы сумма ΩM + ΩΛ равнялась единице. Это означает, что мы уже оставили позади ту эпоху, в которой вклад вещества и космологической постоянной в поддержание плоской формы Вселенной был равен (значение каждой Ω составляло 0,5).

Прошло менее десяти лет, и прозвучавший двойной выстрел результатов наблюдений за сверхновыми звездами типа Ia и реликтовым излучением привел к переходу концепции темной энергии из статуса «какой-то там» идеи, на которой в свое время ненадолго остановился Эйнштейн, в статус непреложного космического факта о жизни. Если только в будущем не окажется, что все эти многочисленные данные получили неверную трактовку, были некорректно собраны или просто в корне неверны, нам останется лишь принять тот факт, что Вселенная никогда не сожмется в размере и не прекратит свое существование. Вместо этого нас ждет довольно скучное будущее: через сотню миллиардов лет, когда большинство звезд уже выгорит, все, кроме самых ближайших галактик, навсегда исчезнет из нашего поля зрения.

К тому времени Млечный Путь соединится со своими ближайшими соседями, создав одну огромную — гигантскую! — галактику в буквальном смысле в настоящей космической глуши. В нашем ночном небе останется сколько-то звезд, мертвых или еще функционирующих, и больше ничего. Астрофизикам будущего предстоит жить в весьма жестоком мире. Вокруг не будет ни одной галактики, которая помогла бы им отследить факт расширения Вселенной, и они, как и Эйнштейн, ошибочно предположат, что живут в статической Вселенной. Космологическая постоянная и ее темная энергия доведут Вселенную до состояния, в котором их нельзя будет не только измерить, но и в принципе вообразить.

Рекомендуем получать удовольствие от космологии, пока это еще возможно.

Глава 6. Напряжение в космосе!

С открытия темной энергии прошло не так много времени, но она уже заняла одно из главенствующих мест в списке самых волнующих вопросов существования Вселенной. К ответам на них ученые так пока и не приблизились, но их можно простить: за этот период астрофизики смогли еще точнее определить параметры, с помощью которых можно описать Вселенную на всем пути ее существования. И они продолжают работать над тем, чтобы еще точнее установить основной из них — скорость расширения. Для ее измерения ученые разработали два метода, почти равноценные по точности, однако их усилия привели к появлению еще одной животрепещущей, провокационной и многообещающей проблемы — оба метода дали совершенно разные результаты.

К такой противоречивости можно относиться по-разному. С одной стороны, воспринимать расхождение результатов как неверное, считая, что оно, вероятно, обусловлено не свойствами Вселенной, а неправильной интерпретацией, ошибками в расчетах или неточными исходными данными. С другой стороны, видеть в этом потенциал. Если мы будем работать над уточнением соответствующих знаний о космическом пространстве, его

Перейти на страницу: